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ABSTRACT 

Wi-Fi positioning systems (WPS) utilize a location’s set of Wi-Fi access point (AP) 

media access control (MAC) addresses and received signal strength pairs as input to an 

algorithm that resolves location referencing a database of spatially labeled AP data. WPS 

are particularly useful in urban canyons where Global Positioning System (GPS) satellite 

views are often blocked. WPS can provide a quicker result than GPS with more accuracy 

than Internet Protocol (IP) or cellular geolocation.  

In this work, we present the design and construction of a corpus of Wi-Fi AP 

MAC address sets derived from the Wireless Geographic Logging Engine (WiGLE) 

database and Census Bureau data. We use our corpus of MAC address queries as input to 

controlled WPS requests. For the resulting WPS responses, we compare the overlap, 

centroid distance, and provide insight into the services’ accuracy and inter-agreement. 
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I. INTRODUCTION 

Wi-Fi positioning systems (WPS) utilize a location’s set of Wi-Fi access point 

(AP) media access control (MAC) addresses and received signal strength pairs as input 

to an algorithm that resolves location, referencing a database of spatially-labeled AP data. 

WPS are particularly useful in urban canyons where Global Positioning System (GPS) 

satellite views are often blocked. WPS can provide a quicker result than GPS, with more 

accuracy than Internet Protocol (IP) or cellular geolocation. WPS are used in a wide 

variety of smartphones, web applications, entertainment devices and business tools.  

Related work has compared IP-based geolocation services [1] and evaluated 

different modes of geolocation on single devices [2]. To our knowledge, there has not 

been a study directly comparing WPS. In this work, we present the design and 

construction of a corpus of Wi-Fi AP MAC address sets derived from the Wireless 

Geographic Logging Engine (WiGLE) database and U.S. Census Bureau data. We use 

our corpus of MAC address queries as input to controlled WPS requests, to investigate 

the Google, Microsoft and Skyhook WPS services. For the resulting responses, we 

compare the response precision, failure behavior, and provide insight into the services’ 

accuracy and inter-agreement. We find services to demonstrate notable, unique behaviors 

Microsoft was found to be most likely to return a failure while Skyhook was least likely 

to return a failure. All services reported location guesses with precision better than 100 

meters for 80 percent of their responses, with best performance in regions with high 

population density. We find significant differences between services, in both their failure 

and non-failure behavior. Most failures were shared pair-wise with some other service, 

but 46.4 percent of non-common failures were unique to some service. Considering 

service interagreement, we find Google/Microsoft and Microsoft/Skyhook equally likely 

to agree as disagree while Google/Skyhook are more likely to disagree than agree. 
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II. BACKGROUND 

A Wi-Fi positioning system (WPS) is a service that uses prior observations to 

determine location from a set of Wi-Fi access points (AP) observed by a client. Media 

access control (MAC) addresses and received signal strength pairs are the inputs to an 

algorithm that determines location using a database of spatially labeled AP data. WPS is 

particularly useful in urban canyons where views of GPS satellites are often blocked [3]. 

In some scenarios, WPS calculates location faster than GPS and more accurately than IP-

based geolocation or cellular-based geolocation [4].  

Three general architectures have been proposed for WPS: network based, terminal 

based and terminal assisted. In network-based WPS, location is determined by the 

strength of the beacon the mobile device emits, as received by the APs and a central 

server. Network-based WPS requires each AP to have the capability of routing 

measurement data to the WPS server; this is also the primary downside to this topology. 

In terminal-based WPS, the mobile device receives beacons from the APs and determines 

location from its local database and device-resident logic. The disadvantage to this 

architecture is the requirement for the mobile device to store the database of past 

observations. In the terminal-assisted architecture, the mobile device receives AP 

beacons, forwards its observations to a central server whose database of prior 

observations is used to infer location [5]. Terminal-assisted WPS architectures are the 

most common among commercial services. For example, Google, Microsoft, Skyhook 

and Navizon all employ terminal-assisted architectures. Apple’s WPS appears to employ 

a hybrid of terminal-based and terminal-assisted architectures: client devices receive 

beacons from APs and send these data to a remote service; the service returns a small, 

relevant sample from its database to the client; the client determines a final location using 

this data sample. 

All WPS require a calibration phase, where a database is built from signal 

measurements obtained by some spatially-aware device (i.e., an initial set of labeled 

data). This is normally accomplished by collecting data for Wi-Fi access points via war 

driving or using database submissions from GPS-equipped devices. Systems have been 
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proposed that self map Wi-Fi access points during system operation [6], rather than 

employ a dedicated calibration phase. 

Using measurements in this database, location position can be inferred from any 

query. Numerous algorithms have been proposed for use in outdoor WPS to infer 

location: cell identity (CI), trilateration based on time of arrival (ToA), trilateration based 

on time difference of arrival (TDoA), trilateration based on received signal strength 

(RSS), triangulation based on angle of arrival (AoA), fingerprinting [5], [3] or signature-

based [7], maximum-likelihood estimation (MLE) based on received signal strength 

(RSS) [8], clustering [9], particle filters [3] and hierarchical Bayesian sensor models [10]. 

In contrast, indoor positioning systems (IPS) using AP data must employ different 

techniques for precise indoor positioning [7], [11], [12], [10], [13], [14] to compensate 

for a variety factors unique to that setting (e.g., signal fading due to building materials 

and signal echoes from reflection and refraction). The focus of this study is commercial 

WPS for outdoor geolocation. We note that we have little insight into which algorithms 

and techniques each service provider employs.  

A. WPS SERVICES 

Google, Skyhook, Microsoft, Navizon and Apple operate popular commercial 

geolocation services that determine location, either exclusively or partially-based on 

queries encoding Wi-Fi signal data. We survey these services briefly in Table 1. 

 

 

 

 

 

 

 

 



 5 

 

Service Used by Technique Data Source Accuracy 
Skyhook PlayStation Vita, 

various mobile apps 
(MapQuest, Kayak, 
etc.) 

No Data War driving, user 
submitted via query 

10-20m [5] 

Google Android, Google 
Maps, Chrome, 
Firefox [8] 

MLE [8] War driving, user 
submitted via query 
[15] 

<50m @ 
80 percent 
confidence 
[8] 

Navizon Business and 
entertainment 
applications 

Triangulation 
[16] 

User submitted via 
query or Navizon 
App [16] 

No Data 

Microsoft Windows Phones, 
Bing, Windows, 
Internet Explorer 

No Data No Data No Data 

Apple IOS, OSX, Safari No Data No Data No Data 

Table 1.   Characteristics of commercial WPS services. 

B. RELATED WORK 

Shavaitt and Zilberman survey and evaluate IP-based geolocation services [1]. 

They compare seven IP-based geolocation services using an algorithm to group IP 

addresses to points of presence (PoPs). They found most services returned consistent 

results, but the accuracy of these results were occasionally erroneous by thousands of 

kilometers.  

Zandburgen evaluates geolocation provided the iPhone 3G, comparing three 

different modes of operation: using A-GPS, using Wi-Fi signals, and using cellular 

positioning. They manually surveyed the behavior at select, known locations. They 

observed cellular positioning accuracy to be consistent with previous studies, but A-GPS 

to be much less accurate than standalone GPS and Wi-Fi geolocation to be less accurate 

than its published specifications [2]. 
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III. METHODOLOGY 

Wi-Fi positioning systems resolve location using MAC addresses and RSSI 

values derived from beacon frames that are continually broadcast by Wi-Fi APIs [2]. To 

build a query corpus for WPS, we might have visited a set of test geographic locations to 

record ground truth (i.e., using a high accuracy GPS device) and then record the output of 

each WPS at that location. This approach would have been labor-intensive and limited to 

a relatively small number of non-diverse test locations, due to obvious practical 

constraints (time and cost). The results of such a survey would be technically infeasible 

for others to reproduce. Further, due to environmental factors, this procedure may not 

ensure that queries are stable across trials: a device might observe, and thus query, 

different MAC and RSSI values at the same location, over short time intervals [17]. Our 

goal is to make timely, controlled, and repeatable queries, allowing apples-to-apples 

comparison of WPS service behavior. This motivated us to develop our own query 

corpus, using assumptions that remove the need for ground truth or field observations.  

A. QUERY CORPUS FOR WPS 

Our ideal WPS query corpus would contain a large number of longitude and 

latitude points with some set of wireless access points visible at each particular location. 

This idealized corpus might be represented by the set of triples {(lat, lon, AP)}, where 

AP = {MAC, RSSI} is some set of MAC address and RSSI pairs visible at a particular 

(lat, lon) location. Further, the corpus should distinguish points by a geographic region, to 

compare the performance of WPS across regions of different population densities (e.g., 

large metropolitan areas versus small urban areas). We discuss our sampling strategy and 

process for gathering corpus data, next. 

B. CORPUS GENERATION 

To generate our query corpus, we require a source of spatially-labeled AP MAC 

addresses. The WiGLE Project is a community-sourced database of wireless access point 

data [18]. WiGLE users can upload wireless hotspot data observable to the public, 

including GPS data, SSID, MAC address and the encryption type used by the AP [19]. 
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WiGLE currently contains over 120 million unique Wi-Fi access points, triangulated 

using over 2 billion unique observations. Users can query the database by geographic 

location, using the two lat/lon points defining the region’s corners. As the WiGLE 

database contains observations made by many users over a long period of time, the access 

point data returned for a region may not reflect the true “view” of a wireless device from 

any single point in time [18]. 

Corpus generation occurs for each of three classes of geographic areas defined by 

the U.S. Census Bureau and U.S. Office of Management and Budget. These classes are: 

micropolitan, metropolitan, and combined statistical areas. U.S. Census Bureau defines a 

metropolitan statistical area as a metro area containing a core urban area with a 

population of 50,000 or more. U.S. Census Bureau defines a micropolitan statistical area 

as a metro area containing a core urban area with a population between 10,000 and less 

than 50,000. The U.S. Office of Management and Budget (OMB) defines a combined 

statistical area based on the socioeconomic ties between adjacent metropolitan and 

micropolitan areas: if ties between areas pass a certain threshold, they become a 

component of the combined statistical area [20]. In the United States, as of 2013, there 

are 11 combined statistical areas containing 99 cities, 577 metropolitan cities, and 564 

micropolitan cities [21]. For the purpose of corpus generation, every city is defined by the 

lat/lon of its city center, as provided by MaxMind [22]. 

For each of our three geographic classes, we generate an independent corpus of 

spatially labeled AP data. For each region, the process can be summarized as: (a) city 

selection, (b) target selection, (c) target AP collection. Unless otherwise noted, all 

selection is simple random sampling with replacement.  

1. City Selection  

For metropolitan and micropolitan classes, we randomly select a city from the list 

of cities in that class, as defined by the 2013 U.S. Census. For the U.S. combined 

statistical areas class, one of the 11 areas is randomly selected, and then a city in that area 

is randomly selected.  
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2. Target Selection  

Using the lat/lon of the city-center as a starting point, we generate a target 

location by traveling a random distance (0–2 km) in a random continuous value direction 

(0–360˚). From this, we define a 100m x 100m square region whose center is this target. 

The target’s region is defined by the lat/lon coordinates at its northeast and southwest 

corners. According to literature Wi-Fi AP radii commonly range from 30m to 200m with 

the majority of APs being consumer-grade having a radiation distance on the lower end 

of the range [8]. Relatively small region dimensions were selected to ensure that access 

points far from one another were not mixed into a single “view.” 

3. RSSI Value Selection 

As we have no way of knowing the actual RSSI value that would be observed in 

the center of the query box. The ideal RSSI value for an AP in our corpus could be 

calculated using data correlating RSSI values and distance (for example, see Figure 1) 

and by calculating the expected distance from the center of our box. We assume points 

within the box are composed of random independent x and y coordinates uniformly 

distributed. The expected distance of a randomly chosen point in a unit square can be 

calculated as follows: 

 

dcenter =
(x − 1

2
)2 + (y − 1

2
)2dxdy

0

1

∫
0

1

∫

= 1
6
P

= 1
6
( 2 + sinh−11)

= 0.3825978582

  

Using the unit square expected distance we calculated the expected distance in our 

100m x 100m square as 38.26 meters [23]. From Figure 1, we find 82 is the median 

observed signal strength at 38.26 meters. We chose to submit a RSSI value of 50 for each 

of the MAC addresses because of a related set of experiments.  
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Figure 1.  Measured signal strength as a function of distance (from [3]). 

4. Target AP Collection  

Using the WiGLE database, we gathered access point data associated with the 

target region. If the database returned two or more MAC addresses for that region, these 

results were included in the query corpus as an entry. Each corpus entry consists of the 

lat/lon points defining the 100m x 100m target region (“box”), the lat/lon of the target at 

the center of this region (“target”), the lat/lon of the city-center originally associated with 

the target (“origin”), the name and state of the city-center, and the access point MAC 

addresses associated with the target region (“wireless”). Figure 2 is a sample entry from 

the query corpus. 
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Figure 2.  A sample entry in our corpus. 

If fewer than two MACs are returned, we discard these results and re-sample, 

selecting a new city for that geographic class. We continue this process until our query 

corpus has reached the desired size. Our final query corpus contains 1550 entries for each 

geographic class, for a total of 4650 target queries. The location of the points in our 

corpus is depicted in Figure 3 and a summary is given in Table 2. 

 
Table 2.   Summary of corpus queries. 
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Figure 3.  Location of all corpus queries. 

C. QUERYING SERVICES 

We developed a tool to query each wireless location service using our corpus 

data. Our tool can submit a query to either of the Google, Skyhook, or Microsoft 

geolocation services, using the wireless access point and RSSI values from each entry in 

our corpus. Each geolocation service has some recognizable failure behavior if it is 

unable to determine the location given the input data. When successful, each service 

returns a location (lat/lon) and accuracy (in meters). We describe some of the relevant 

details of this process, next. 

1. Skyhook Location Service  

During normal operation, Skyhook’s WPS uses an installed API to get the Wi-Fi 

access point data observed by the user’s system and submits this information as a query 

in XML format. To submit custom queries, it is necessary to send a handcrafted XML 

query via an HTTPS POST request. Others have accomplished this to geo-locate arbitrary 

wireless routers by submitting a query with a single access point MAC [24, 25, 26]. We 
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modified these techniques to make multiple MAC queries. Skyhook returns a specific 

“location not found” message if it is unable to determine a location for a query.  

2. Google Location Service  

Google’s WPS can be queried in a variety of ways, including a handcrafted HTTP 

request [27]. If the service is unsuccessful in geo-locating based on access point MAC 

address data, it returns a result based upon IP geo-location. Our tool recognizes when 

Google returns IP geo-location responses, and discards this result as a failure. Although 

the service does not explicitly indicate error, any responses based on IP geo-location are 

recognizable by comparing with a query containing no AP MAC inputs. The service 

limits each query to include at most 37 MAC addresses. We truncate queries from our 

corpus when necessary, using up to the first 37 MAC addresses collected from WiGLE.  

3. Microsoft Location Service  

Microsoft’s WPS can be queried using a handcrafted XML request, similar to the 

Skyhook service [28]. The service will return a “location not found” message if it is 

unable to determine a location in response to a request. 
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IV. ANAYLISIS 

We used the tool we developed to query each wireless location service using the 

corpus data, (see Chapter 3, Section B). This was done during two separate two-week 

periods at the beginning of December 2013 and at the beginning of February 2014. Our 

queries were performed against our three target services: Google, Microsoft and 

Skyhook. We collected a total of 1550 responses from each service per geographic class, 

with no more than 33 percent of those responses being indicators of failure. We 

summarize observed failure behavior in section A. In section B we look at a notion of 

precision using the “accuracy” value returned by the service. We look at accuracy, which 

we measure as the distance from the service’s response to the center of the corpus query 

box. Finally we look at the level of interagreement between the services. Throughout this 

chapter we use consistent notation for the relationship between queries and responses, 

summarized in Figure 4. Where clear, we often abuse notation, writing c instead of ci and 

r instead of ri. 

 
Figure 4.  Terms used in analysis. 
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A. FAILURE ANAYLISIS  

When a service is unable to resolve a location given the set of input data, we 

detect it and mark this as a failure. In Figure 5, we plot the location of all query failures. 

They are distributed throughout every geographic class and appear to be distributed in 

proportion to our corpus. 

 
Figure 5.  Location of corpus queries yielding WPS failure responses. 

We calculated the mean query lengths for each geographic class, separating 

successful and non-successful queries by service (see Table 3). The mean number of 

MACs in a query was greater for high-density geographic classes, as expected. When 

examining the number of MACs in failed queries, we noticed much less variation from 

class-to-class and a much smaller mean length.  
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Table 3.   Mean query lengths. 

In Table 4, we further examine the service failures by number of MAC addresses 

in the query. We found Microsoft to have a greater number of failures for every 

geographic class and every query length. Skyhook and Google had nearly equal number 

of failures in the Micropolitan class. In more densely populated areas (i.e., metropolitan 

and combined statistical classes), Skyhook returned significantly fewer failures in every 

case.  

 
Table 4.   Failures by region, service and number of MACs in query. 

Positioning services require at least two proximate AP MACs in a query to return 

a position. This behavior is by design, in part, to protect the privacy of Wi-Fi AP owners, 

preventing the geolocation of arbitrary, individual AP devices. Consequently, queries will 

fail if the service recognizes less than two MACs in our query as geographically 

proximate. The fact that data obtained from WiGLE database contains observations made 

by many users over a long period of time likely contributes to a high number of failures 

at lower query lengths.  
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As discussed earlier, the AP data collected from WiGLE for a region may not 

reflect the true “view” of the wireless environment from any single point in time. To 

compensate, we removed the 439 failures that were shared amongst all services (see 

Table 5). We believe the common failures are likely attributable to historic WiGLE data 

that, when aggregated, fails to reflect an authentic view. Excluding common failures, we 

continued to observe Microsoft to have a greater number of failures for every geographic 

class and for every query length. Excluding common errors, 15.5 percent of Microsoft 

queries resulted in failure, compared to 8.0 percent and 4.0 percent for Google and 

Skyhook, respectively. Both Skyhook and Microsoft showed fewer failures in areas of 

higher population density: non-common failure distribution by area (micropolitan, 

metropolitan, combined statistical areas) is 65.3 percent, 22.4 percent, 12.4 percent for 

Skyhook and 44.9 percent, 28.6 percent, 26.7 percent for Microsoft. Google’s non-

common failures, in comparison, were distributed rather evenly between classes (29.3 

percent, 36.4 percent, 34.3 percent). Skyhook and Google had nearly equal number 

(~100) of failures in the micropolitan class; however, this absolute value represents a 

much larger proportion of failures for Skyhook (failures in the micropolitan class 

represent 65.3 percent of all non-common failures for Skyhook, vs. 29.3 percent for 

Google). In Table 6, we examine the unique failures generated by each service. 

Excluding common failures, 56.4 percent of Microsoft failures were unique to Microsoft 

alone while only 39 percent and 22 percent were unique to Google and Skyhook, 

respectively. We observed a significantly fewer total number of unique failures from the 

Skyhook service (38 across all geographic classes, versus 132 from Google and 367 from 

Microsoft). In later sections, we consider pair-wise shared failures, as it relates to service 

interagreement. 
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Table 5.   Failures by region, service and number of MACs in query 

(excluding common failures). 

 
Table 6.   Non-common and unique failures by region and service.  

B. PRECISION 

In this section, we consider the precision of each service. Our working definition 

of precision is the response “accuracy” reported by the service. This is the radius r of the 

circle centered at ci provided in the service’s response. Abstractly, we consider a 

service’s response to encode a collection of guesses (possible locations), all of which are 

contained in the reported circle. The smaller the radius of this circle, the more these 

guesses tend to agree with one another; this aligns with the traditional notion of precision 

in repeated trials. Another possible definition of precision is the “closeness” of the circles 

reported in response to identical queries. Since we control queries very carefully, this 

definition of precision would be uninteresting to explore: for all our services, responses to 

the same query are identical (at least over short periods of time). 
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For the Google service, precision appears quite consistent across all three 

geographic classes (see Figure 6). Response radii range from 20 m to 405 m, where 80 

percent of the radii are ~125 m or less. The most notable feature of Google’s service is 

the dramatic spike in responses with ~35 m radius precision.  

 
Figure 6.  Precision for Google service results. 

For the Microsoft service, response radii range from 15 m to 372 m, where 80 

percent of the radii are ~100 m or less (see Figure 7). The most notable feature of 

Microsoft’s precision results is the gap in precision values between ~20 m and ~50 m. 

Microsoft service performed better in more urban areas, as shown by the CDF. 
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Figure 7.  Precision for Microsoft service results. 

For the Skyhook service, response radii range from 10 m to 450 m, where 80 

percent of the precision values are ~140 m or less (see Figure 8). The most notable 

feature of Skyhook’s precision distribution is the spike of responses with ~150 m and 

~200 m radius precision. Skyhook’s service performed better in more urban areas: half of 

all responses for queries in cities of combined statistical areas are 60 m or less in radius.  
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Figure 8.  Precision for Skyhook service results. 

Comparing Skyhook, Google, and Microsoft, we find Microsoft to have a higher 

reported precision (smaller radii) than Google, and Google to have higher reported 

precision than Skyhook. While this may suggest that Microsoft has better performance, 

one must consider Microsoft’s much higher failure rate.  
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C. ACCURACY 

In this section, we consider service accuracy, defining this as d(c,t), the distance 

from the target t to the response’s centroid c. Defining accuracy in this way assumes that 

the target t is a meaningful landmark. The query for target t, however, is derived from 

user-submitted WiGLE data: it may not reflect an authentic “view” of the APs near t at 

any one point in time—in particular, these APs may not reflect the view of the target at 

the time we issued the query to the service. Nonetheless, for each case, we consider the 

distribution of accuracies by service and region. We consider responses within 400m of 

the target and those farther than 400m (“outliers”) as separate cases, and report on each.  

For the Google service, the majority of target accuracies fall between 20–75 m 

(see Figure 9). Google’s service performed significantly better in the combined statistical 

area class: 80 percent of responses are within ~90 m of the target for micropolitan and 

metropolitan areas, while 80 percent of the responses are within ~70 m of the target for 

cities of combined statistical areas. 
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Figure 9.  Google service accuracy distribution d(c,t). 

For the Microsoft service, the majority of target accuracies fall between 20–75 m 

(see Figure 10). Microsoft’s service achieved greatest accuracy in the combined statistical 

area class, with slightly poorer accuracy in the metropolitan class: 80 percent of the 

responses are within ~100 m of the target for micropolitan and metropolitan areas, while 

80 percent of the responses are within ~85 m of the target for cities of combined 

statistical areas. Microsoft’s service provided the least accurate results in the micropolitan 

geographic class. 
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Figure 10.  Microsoft service accuracy distribution d(c,t). 

For the Skyhook service, the majority of target accuracies fall between 25–75 m 

(see Figure 11). Skyhook’s service achieved greatest accuracy in combined statistical 

area queries, with slightly poorer accuracy in metropolitan queries and poorest results in 

the micropolitan geographic class: 80 percent of the responses are within ~100 m of the 

target for micropolitan areas, 80 percent of responses are within ~90 m of the target for 

metropolitan areas, and 80 percent of responses are within ~70 m of the target for cities 

of combined statistical areas. 
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Figure 11.  Skyhook service accuracy distribution d(c,t). 

Generally, we find all services have highest accuracy for combined statistical 

areas, followed by metropolitan then micropolitan regions. Next, we consider the relative 

accuracy of these services per geographic area.  

Regardless of service, the majority of responses in the micropolitan class fall 

within 25–75 m of the target, where 80 percent of responses are within ~100 m of the 

target (see Figure 12). Google’s service achieved best accuracy, measured by both the 

total number of responses near the target and by the proportion of total responses near the 

target. Microsoft’s service provided the least accurate results in the micropolitan 

geographic class. 
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Figure 12.  Micropolitan accuracy distribution d(c,t). 

Regardless of service, the majority of responses in the metropolitan class fall 

within 20–75 m of the target, with 80 percent of responses within ~100 m of the target 

(see Figure 13). By proportion of total responses, we observe Google and Skyhook to 

share best accuracy in the metropolitan class. By total number of responses within 75 m 

of the target, we find Skyhook out-performs Google. By most measures, Microsoft 

provides the least accurate results for the metropolitan class. 
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Figure 13.  Metropolitan accuracy distribution d(c,t). 

Regardless of service, the majority of responses for cities in combined statistical 

areas fall within 20–75 m of the target, with 80 percent of responses within ~90 m of the 

target (see Figure 14). For queries in combined statistical areas, we observe Skyhook to 

have best accuracy, with the most responses within 50 m of the target, and Microsoft to 

be the least accurate. 
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Figure 14.  Combined statistical area accuracy distribution d(c,t). 

The previous observations (Figures 9–14) ignored “outlier” responses (i.e., those 

that were farther than 400 m from the target. These outliers account for less than 10 

percent of responses; however, we believe they warrant examining in detail. In Figure 15, 

we plot responses farther than 10,000 m from the target, with details in Table 7. The 

outliers ranged from 12.7 km to 3,800 km from the target. Most outliers were responses 

to queries with less than 10 APs. If a household or business moves, relocating their APs, 

this would likely “confuse” the geolocation service; in this scenario, it is unclear if 

WiGLE data is out-of-date or if service behavior is out-of-date. Since our corpus is 

created from temporally-scattered, user-submitted data, any AP relocation may 

compound this confusion: it is possible for an AP that has moved multiple times to have 

multiple location entries in the WiGLE database. From a random sample of 75 APs from 

outlier queries, however, we did not observe any MACs with multiple entries when we 

queried WiGLE service. 
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Figure 15.  Accuracy “outliers,” d(c,t) ≥ 10,000 m. 

 
Table 7.   Accuracy “outlier,” details. 
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D. INTERAGREEMENT 

In this section, we consider service interagreement in attempt to measure of the 

degree to which service behavior agrees with one another. The definition of accuracy 

used in the previous section was the response’s distance from the initial query target, and 

implicitly assumed the target to be a meaningful landmark. Given our use of user-

submitted, geolocated AP data, this was problematic. The intention of measuring 

interagreement is to relax this, allowing analysis without explicit use of an assumed target 

location. How to quantify interagreement precisely, however, requires some discussion. 

Initially, for any two responses, one might consider a metric derived from the intersection 

of the two responses (see Figure 16). We define the ratio of the intersection to the total 

area represented by the two responses as Case-1 Interagreement. This metric is 

symmetric and ranges from zero (no intersection) to 0.5 (entirely overlapping areas). 

 
Figure 16.  Case-1 Interagreement metric  

There are scenarios where this simplistic metric appears inadequate or misleading. 

For example, one such scenario is when a circle lays inside another circle: if the inner 

circle response has high precision (a small radius), the intersection is small and yields a 

Case-1 interagreement that is equal to the scenario where two responses have a relatively 

small overlap (see Figure 17). We separate the case of nested circles, analyzing these 
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using a separate Case-2 Interagreement metric (see Figure 18). Case-2 Interagreement is 

defined by the ratio of the two circle radii, r/R where R is the radius of the outer circle. 

This is a symmetric metric, ranging between zero and one, with zero indicating an inner 

radius of zero and one indicating the inner and outer radii are equal. 

 
Figure 17.  Scenarios motivating multiple interagreement metrics. 

 
Figure 18.  Case-2 Interagreement metric. 

Neither Case-1 nor Case-2 metrics characterize the level of disagreement between 

responses. For example, when the Case-1 Interagreement is zero, one might want a metric 



 33 

that distinguishes a 50 m disagreement from a 50 km disagreement. The Case-3 

Interagreement metric is defined as the distance between non-intersecting responses (see 

Figure 19). 

 
Figure 19.  Case-3 Interagreement metric.  

Finally, we consider service failure scenarios as another type of interagreement. 

For each pair of services, we consider the number of failures for the individual service 

and the number of failures shared between the services. We define Case-4 

Interagreement as a simple 0/1 metric indicating that the failure response is in agreement 

between the services, and treat non-shared failures as a type of disagreement. 

Dividing interagreement into several cases is complex, and becomes a problem 

for making sense of “the big picture” for interagreement. It was our goal to develop a 

single metric of interagreement to accomplish this, and considered how to combine these 

metrics. We decided to give the result of each pair of services a value, which we assigned 

to either an agreement or a disagreement sub-total. Our Case-1 and Case-2 metrics do a 

good job of characterizing agreement. For Case-1, we double the interagreement ratio 

(previously ranging 0–0.5) and assign this to agreement, assigning the complement of this 

to disagreement. For Case-2, we assign the entire value to agreement, and its complement 

to disagreement. For Case-3, the entire value is assigned to disagreement. For Case-4, if a 

failure is unique to one service, its value is assigned to disagreement; if it was a shared 



 34 

failure, then the value was assigned to agreement. We sum the agreement and 

disagreement values to arrive at agreement and disagreement totals for each service pair. 

The agreement and disagreement totals will always equal the total number of queries. To 

arrive at our final summary metric, we normalize each subtotal by the total number of 

queries. To arrive at an overall average for interagreement between a pair of services, we 

average the normalized agreement and disagreements across the three geographic classes. 

We remark that while promising as a first attempt at analysis, this summary statistic 

should be interpreted with extreme caution.  

In Table 8, we summarize the number of occurrences of each case, per service 

pair and geographic class. Of the 1550 service query pairs per geographic class, we find 

Case-1 results ranging between 29–43 percent, Case-2 ranging between 26–49 percent, 

Case-3 ranging between 3–6 percent and Case-4 ranging between 14–37 percent of total 

queries. 

 
Table 8.   Summary of interagreement cases 

In Table 9, we summarize details of Case-4 query pairs. We find that while the 

number of unique failures varies dramatically, the percentage of shared failures remains 

nearly constant at approximately 50 percent. We will further examine Case-4 as we 

consider each service pair. 
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Table 9.   Case-4 details. 

In Figure 20, we plot all four metrics (Case-1, Case-2, Case-3, Case-4) for 

Google/Microsoft service interagreement. In Case-1, 49 percent have less in common 

than in common (metric is ≤0.25). In Case-2, we observe when service guesses 

completely overlap, more identify areas that are different in precision (65 percent have 

r/R ratios < 0.5). In Case-3, we find 56 percent of non-overlapping responses are greater 

than 50 m away. In Case-4, we observe 49.4 percent of service failures are shared. 

Proceeding with our summary metric we observe per geographic class, a total agreement 

(disagreement) of 43.2 percent (56.8 percent) in the micropolitan class, 45.5 percent (54.5 

percent) in the metropolitan class, and 45.2 percent (54.8 percent) for the combined 

statistical areas class. Averaging across classes, we observe 44.6 percent agreement (55.4 

percent disagreement) between Google and Microsoft. With no significant and consistent 

bias to agreement or disagreement we conclude that Google and Microsoft (to some 

degree) are equally likely to agree or disagree. 
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Figure 20.  Google/Microsoft service interagreement. 

In Figure 21, we plot all four metrics of interagreement between Google and 

Skyhook. In Case-1, we find 51.5 percent have less in common than in common (metric 

is ≤0.25). In Case-2, we observe when service guesses completely overlap, more identify 

areas that are significantly different in precision (72.4 percent have r/R ratio < 0.5). In 

Case-3, we find 49.6 percent of non-overlapping responses are greater than 50 m away. 

In Case-4, we observe 50.7 percent of service failures are shared. Proceeding with our 

summary metric, we observe per geographic class, a total agreement (disagreement) of 45 

percent (55 percent) for the micropolitan class, 42.5 percent (57.5 percent) for the 

metropolitan class, and 38.8 percent (61.2 percent) for the combined statistical area class. 

Averaging across classes, we observe 42.1 percent agreement (57.9 percent 

disagreement) between Google and Skyhook. While Case-1, Case-3, and Case-4 indicate 

equal likelihood to agree or disagree, Case-2 and the summary metric indicate 

disagreement. From Table 8 we find Case 2 encompasses 42.4 percent of responses in 
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this service pair. Given the large portion of total responses in Case-2 and the concurrence 

with the summary metric we conclude that Google and Skyhook are (to some degree) 

more likely to disagree than agree. 

 
Figure 21.  Google/Skyhook service interagreement. 

In Figure 22, we plot all four metrics of interagreement between Microsoft and 

Skyhook. In Case-1, we find 49.9 percent have less in common than in common (metric 

is ≤0.25). In Case-2, we observe when guesses completely overlap, more identify areas 

that are significantly different in precision (61.4 percent have r/R ratio < 0.5). In Case-3, 

we find 52.4 percent of non-overlapping responses are greater than 50 m away. In Case-

4, we observe 47 percent of service failures are shared. Proceeding with our summary 

metric we observe per geographic class, a total agreement (disagreement) of 47.9 percent 

(52.1 percent) for the micropolitan class, 41.6 percent (58.3 percent) for the metropolitan 

class, and 38.5 percent (61.5 percent) for the combined statistical area class. Averaging 
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across the classes, we observe 42.8 percent agreement (57.2 percent disagreement) 

between Microsoft and Skyhook. With no significant and consistent bias to agreement or 

disagreement, we conclude that Microsoft and Skyhook (to some degree) are equally 

likely to agree or disagree. 

 
Figure 22.  Microsoft/Skyhook service interagreement. 
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V. CONCLUSION 

In this work, we have presented the design and construction of a corpus for testing 

Wi-Fi Position Systems, using AP MAC addresses derived from the WiGLE database 

and test cases derived from city classes defined by U.S. Census Bureau data. We 

employed our query corpus to implement controlled WPS requests to the Google, 

Microsoft and Skyhook WPS services. In contrast to prior work, our tools are unaffected 

by environmental conditions or variability associated with native, proprietary service 

libraries, both of which impact WPS characterization using handheld devices in the field. 

We propose several metrics expressing “service interagreement,” allowing our corpus to 

characterize service response behavior in the absence of ground truth. 

A. FUTURE WORK 

Our tests were limited to the Google, Microsoft, and Skyhook WPS services. 

Future work could expand this survey to include Apple, Navizon and other WPS services. 

While our corpus allows apples-to-apples comparison between services, the expectation 

that a useful corpus relate to real-world performance is natural. Comparing results 

obtained with our corpus and results obtained from a corpus derived from real-world 

observations (“ground truth”) would serve to contextualize our observations. 

B. SUMMARY 

A significant proportion of our query corpus is relatively uninteresting: 9.4 

percent of queries result in failure from all services. In non-failure scenarios, each service 

gave more than 80 percent of its responses reporting a location guess of no more than 100 

meters in radius. As expected, every service demonstrated best performance in cities of 

densest populations (combined statistical areas). Beyond this, we see significant 

differences between services, in both their failure and non-failure behavior. Excluding 

common failures, 4.0 percent of the corpus resulted in failure responses for Microsoft, 8.0 

percent for Google, and 16.0 percent for Skyhook. Most failures were shared pair-wise 

with some other service, but 46.4 percent of non-common failures were unique to some 

service. On success, the services behaved differently with respect to their reported 



precision: Microsoft rarely reported location guesses 20–50 meters in radius, leaving a 

startling “precision gap.” In comparison, Google results appeared skewed toward guesses 

with radii in the 20–40 meter range. Skyhook reported better precision in geographic 

regions with denser populations, while Google’s responses showed similar precision for 

each geographic region. Considering service interagreement, we find Google/Microsoft 

and Microsoft/Skyhook equally likely to agree as disagree while Google/Skyhook are 

more likely to disagree than agree. 
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